European Union funding

| Horizon 2020
for Research & Innovation

Pinocchio f 22%

Fast forward & inverse dynamics

Nicolas Mansard
(CNRS)

\\N“'E,‘, 5
J % (7N
., ¢ A SEC)E
- bl €l e
. "2 [t ~7
=
«. 7 S N AT L—l“',’v”,m 0
ICJIBD Xy OXFORD
OINBY MAX-PLANCK-GESELLSCHAFT

PAL e COSTAIN

ROBOTICS Wandercroft

@ AIRBUS 3 ApAJH

MEMMO: Memory of Motion — www.memmo-project.eu

WWW Material

o Web site
a https://stack-of-tasks.github.io/pinocchio

o Doxygen

o Documentation tab on github.io

0 Tutorials:

0 Practical exercices in the documentation

0 Also use the ? In Python

MEMMO: Memory of Motion — www.memmo-project.eu

Contributing to Pinocchio

0 GitHub project
a https://github.com/stack-of-tasks/pinocchio

0 Post issues for contributing

o We are looking for doc-devs!
0 Feedback some material as a thank-you note
0 In the doc: “examples” is waiting for you

MEMMO: Memory of Motion — www.memmo-project.eu

C++ / Python

a C++ Library
0 Fast, careful implementation
0 Using curiously recursive template pattern (CRTP)
2 You likely don’t want to develop code there
0 Using it is not so complex (think Eigen)

o Python bindings
a A 1-t0-0.99 map from C++ API to Python API

0 Start by developing in Python
0 Beware of the lack of accuracy ... speed is ok

MEMMO: Memory of Motion — www.memmo-project.eu

Modeling and optimizing

o Pinocchio is a modeling library
2 Not an application
o Not a solver
0 Some key features directly available

o You don’t want the solver inside Pinocchio
2 Inverse dynamics: TSID
2 Planning and contact planning: HPP
2 Optimal control: Crocodyl

o Optimal estimation, reinforcement learning, inverse
kinematics, contact simulation ...

MEMMO: Memory of Motion — www.memmo-project.eu

List of features

o URDF parser

o Forward kinematics and Jacobians

o Mass, center of mass and gen.inertia matrix

o Forward and inverse dynamics

o Model display (with Gepetto-viewer)

a Collision detection and distances (with HPP-FCL)
o Derivatives of kinematics and dynamics

o Type templatization and code generation

MEMMO: Memory of Motion — www.memmo-project.eu

1SID

0 Pinocchio for

o Computing the inertia matrix, jacobians, kinematics

a Formulation of tasks
0 Contact models
2 QP resolution

MEMMO: Memory of Motion — www.memmo-project.eu

HPP planner

o Pinocchio for
0 Geometry, collision (hpp-fcl)
0 Projectors with inverse kinematics

0 Balance constraint with dynamics

0 Pinocchio encapsulated in hpp-Pinocchio
o Stochastic exploration algorithm (RRT)

o Contact checking

0 Re-arrangement algorithms

MEMMO: Memory of Motion — www.memmo-project.eu

Crocodayl

o Pinocchio for
0 Kinematics and dynamics
2 And their derivatives
0 Display with Gepetto-viewer

o DDP optimizer
o Task/cost formulation

MEMMO: Memory of Motion — www.memmo-project.eu

Representing the physical world

° A
p P
A
This is a point This is not a point

This is the representation of a point

MEMMO: Memory of Motion — www.memmo-project.eu

Representing the physical world

0 Pinocchio is a model

0 Of course, models are wrong
o The way you represent geometry matters

o Example of SO(3)
a ris a map from E(3) to E(3)
0 Ris a othonormal positive matrix
o wis a 3D vector
0 g is a quaternion represented as a 4D vector
2 Roll-Pitch-Yaw & other Euler angles should not be used

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

Basics

o Urdf model

0 Kinematic tree

0 Forward kinematics
o Display

o Spatial algebra

MEMMO: Memory of Motion — www.memmo-project.eu

Kinematic free

0 Inside robot model:
0 joints: joint types and indices
0 hames: joint names
0 jointPlacements: constant placement wrt parent
0 parents: hierarchy of joints representing the tree
0 No bodies

0 masses and geoms are attached as tree decorations

0 First joint represent the universe

a If ng==7 then len(rmodel.joints)==8

MEMMO: Memory of Motion — www.memmo-project.eu

Kinematic free

dipyTee stk
L5 go WS Mg _ gin0ctho
@6\%\4 A
@L@&%-@M

MEMMO: Memory of Motion — www.memmo-project.eu

Direct geometry

M(q) I C9S(Q1) +1, C_OS(Q1+C12)
I, sin(q;) + 1, sin(q;+q,)

MEMMO: Memory of Motion — www.memmo-project.eu

Direct and inverse functions

0 Direct geometry
h:q— h(q), C! continuous function §

0 Direct kinematics

v 4l = v (0,) = J(q) § v \
V2 ; »

0 Inverse geometry
o |l defined, singular points #
2 Numerical inversion by Ne

0 Integration of the descent
2 Robot trajectory
2 Quadratic problem at each step

MEMMO: Memory of Motion — www.memmo-project.eu

Display

0 Gepetto-viewer is a display server

0 Python can create a client to this server

0 Gepetto-viewer does not know the kinematic tree
0 Pinocchio must place the bodies
2 RobotWrapper is doing that for you (not in C++)

MEMMO: Memory of Motion — www.memmo-project.eu

Spatial algebro

o M: placement in SE3

o v: “spatial” velocity of SE3 ’ WQ@JC
0 M=vx M /\ (N Ve M

0 o: “spatial” acceleration in SE3
0 v e Mbé=se(3)
0 o€ M =se(3)
oa=v

a ¢: “spatial” force in SE3
0 PowerP=<¢|v>=4¢T4v € R
o M € Fb: momentum

o Y: “spatial” inertia in SE3
an=Yv
0 0=Ya

MEMMO: Memory of Motion — www.memmo-project.eu

Plaocement

MEMMO: Memory of Motion — www.memmo-project.eu

Displacements

MEMMO: Memory of Motion — www.memmo-project.eu

Velocities

MEMMO: Memory of Motion — www.memmo-project.eu

Acceleration

MEMMO: Memory of Motion — www.memmo-project.eu

Derivatives

A
d d A A A
—yV = — 7V v, X v
dt dt T Va4

A
d d A A A
— ¢ = — T "V X
dt dtcb A ¢

MEMMO: Memory of Motion — www.memmo-project.eu

Inertias

IR S

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Model and data

0 Pinocchio.Model should be constant
0 Kinematic tree, joint model, masses, placements ...
2 Plain names used here

0 Pinocchio.Data is modified by the algorithms
aoMi, v, a
0 J, Jecom
oM

0 tau, nle

a 1 Model, several Data

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Forward kinematics

o pinocchio.forwardKinematics(rmodel,rdata,
q,vd,aq)

o Compute all the joint placements in data.oMi

o M =data.oMi[-1] : |last placement
a R = M.rotation
o p = M.translation

MEMMO: Memory of Motion — www.memmo-project.eu

NumPy Array vs Matrix

0 Pinocchio works with NumPY.Matrix
0 Ris a matrix
a pis a 1d matrix: p.shape == (3,1)
2 You can multiply R*p

2 NumPy works better with Array
a np.zeros([3,3]) is an array

2 You cannot multiply array
0 Use np.dot or obtain a coefficient-wise multiplication

o SciPy works with array too

MEMMO: Memory of Motion — www.memmo-project.eu

ScIPy optimizer

from scipy.optimize import fmin_slsqp
fmin_slsqp?

fmin_slsqp(x0 = np.zeros(7),
func= costFunction,
f _egcons = constraintFunction,
callback = callbackFunction)

MEMMO: Memory of Motion — www.memmo-project.eu

ScIPy optimizer

0 Make the optimization problem a class:
0 Problem parameters in the __init__
0 Cost method taking x as input
0 Constraint and callback method if need be

MEMMO: Memory of Motion — www.memmo-project.eu

SciPy optimizer

class OptimProblem:
def init_ (self,rmodel):
Put your parameters here
self.rmodel = rmodel
self.rdata = self.rmodel.createDatal)
def cost(self,x): return sum(x**2)
def callback(self,x): print(self.cost(x))

pbm = OptimProblem(robot.model)
fmin_slsgp(x0=x0,func=pbm.cost,callback=pbm.callback)

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Joint and frames

My lal= 2]y

a Joint frames e

0 Skeleton of the kinematic chain
0 Computed by forward kinematics in rdata.oMi

III

0 “Operational” frames

0 Added as decoration to the tree

0 Placed with respect to a joint parent
0 Stored in rmodel.frames

2 Computed by updateFramePlacements in rdata.oMf

MEMMO: Memory of Motion — www.memmo-project.eu

Joint limits

a Parsed from urdf

a In rmodel.lowerPositionLimits and
rmodel.upperPositionLimits

o Beware, infinity by default

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Position versus placement

. DLM —7 DLS
o Difference of positions 4(4)

o residuals = p-p*

o Diffence of rotations
o residuals = log;(RT R*) — SRS
- @(E'\ | (sz//%k# |
o Diffence of placements L= hotter 7
o residuals = logg(M1 M*)

MEMMO: Memory of Motion — www.memmo-project.eu

Free flyer joint
o Revolute joint

0 g of dimension one, v, = ¢
o Free flyer

9(/%/25

/

MEMMO: Memory of Motion — www.memmo-project.eu

Integrate and differenciate

Jpext — PINocchio.integrate(q,v,) € Q

qnext - qC‘DVq

Aq = V= pinocchio.difference(q,,q,) € quQ

AqQ=q, (-) q4

MEMMO: Memory of Motion — www.memmo-project.eu

Integrate and differenciate

0 On a Matrix Lie Group
q®v, = Matrix(q) exp(skew(v,)) = Q Exp(v,)

q; (-) q; = log(Q' Q))

MEMMO: Memory of Motion — www.memmo-project.eu

Optimization with Q / TQ

aqg=(xV,z q, ..) with g unitary

0 What is the result with a solver ?

MEMMO: Memory of Motion — www.memmo-project.eu

Solution 1: normalized

def constraint_q(self, x):
return norm(x[3:7])-1)

MEMMO: Memory of Motion — www.memmo-project.eu

Solution 2: reparametrize

0 We represent g
0 as the displacement v,

a from a reference configuration q,

q:qOC_DVq

MEMMO: Memory of Motion — www.memmo-project.eu

Random configuration

pinocchio.randomConfiguration(rmodel)

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

= European | °°°°°°

= Commission

Part i
Differencial kinematics

\\N“'E,‘, 5
. % (arw,
7 e p A {8 3
Cl - A, €l (S

«. = N 4T UNIVERSITY O
Z NS et
ICllaD Xy OXFORD
OINBY MAX-PLANCK-GESELLSCHAFT

PAL 3 COSTAIN

ROBOTICS Wandercroft

o
@ AIRBUS 3 ApAJH

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

Manifold-to-manifold maps

a Function f:
2 From manifold to manifold

aM:qe Q —»> M(q) € SE3
Tangent

a Derivative F,
o From tangent to tangent
oM, :v,eTQ ->veMe

Manifold
0 v(q,vy) = J(q) v,

o J: from vector to vector

MEMMO: Memory of Motion — www.memmo-project.eu

Conseguence

2 You should know in which tangent space you work
o Typically at the local point, or at the origin

>

A ok
v(q,v) = Q) v,

0 In Pinocchio,

the velocity are often represented locally
0 Velocity of the free flyer in the frame of the hip

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Joint jacobian

o Computed by two steps:

o computelointlacobians(rmodel,rdata,q)

a getJointJacobian(rmodel,rdata,|IDX,LOCAL/GLOBAL)

a From local to global o
°T v = Y X AN =Y

/tg(«ﬁ{—_ L\} OXA A}ié)}

MEMMO: Memory of Motion — www.memmo-project.eu

Frame jacobian

o Just add the additional displacement
X \ |
¢ e S
h)
0 4 steps
ComputelointlJacobian

updateFramePlacements
getFramelacobian

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Chain rule

Cost(q) = log(M(q))
Cost=logo M

Cost gq=log MM q

M q°?
log M

MEMMO: Memory of Motion — www.memmo-project.eu

Log jacobian

o Computed in pinocchio

2 Pinocchio.Jlog

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

.memmo

a Recall q=q(@ v ,=1(v,)
0 c(vg) = log(M(r(v,)))

2 Chain rule ...
a r(v) = integrate(q,,v)
a R_v =dIntegrate_dv (q,,V)
a0 Not implemented yet in Pinocchio
0 But it is the inverse of dDiffence which is implemented

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

Horizon 2020
European Union funding

European |
for Research & Innovation

Commission

‘\\NWE/
N o
e
.
T
2\
P 9
ICJIBD =

PAL nie COSTAIN

ROBOTICS Wandercroft

o
@ AIRBUS 3 ApAJH

MEMMO: Memory of Motion — www.memmo-project.eu

Dynamics of articulated bodies

o Dynamic equation of the robot
M(qQv, +c(q,v4) + 9(q) = 14

MEMMO: Memory of Motion — www.memmo-project.eu

Dynamics of articulated bodies

o Dynamic equation of the robot
M(Qv, +c(q,vy) +9(q) = 14

o Actuation of the robot

0 Fixed manipulator: 7, = 1,

0
0 Floating robot: 7, = [T] =STr,,
m

0 Robot in contact: : 7, = ST, + JT ¢

MEMMO: Memory of Motion — www.memmo-project.eu

An Intuition of M¢

MEMMO: Memory of Motion — www.memmo-project.eu

RNEA algorithm

‘ = _, RNef S
“ Vgt @(7/Wﬂ) ?’Z)’(NQ(fi\@)ﬂ\ 01 >‘LS/JQ

(g Hyw)) = Y0 1,7, /Zq)

“l@)b
W; C@&ﬁ& Z)UO @
ﬁ/;wga(%@{l(j) — le M/AWSK> 5)[:

MEMMO: Memory of Motion — www.memmo-project.eu

Other algorithms

o CRBA
o ABA

o ComputeAllTerms

MEMMO: Memory of Motion — www.memmo-project.eu

RNEA with forces

(o, + blg M>+}% ﬁwv%(q\r/k\

o L))
g wly o ged

L)

MEMMO: Memory of Motion — www.memmo-project.eu

memmo

MEMMO: Memory of Motion — www.memmo-project.eu

MEMMO: Memory of Motion — www.memmo-project.eu

Optimization problem

r?ionHMf’q +b(q,v) — 7 _]TQDH(L

MEMMO: Memory of Motion — www.memmo-project.eu

Optimization problem

0o OptimProblem class
o With a x2var function that makes the dispatch

a It is a linear problem: we should not use NLP

a See TSID tomorrow

MEMMO: Memory of Motion — www.memmo-project.eu

