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WWW Material

� Web site
� https://stack-of-tasks.github.io/pinocchio

� Doxygen
� Documentation tab on github.io

� Tutorials: 
� Practical exercices in the documentation

� Also use the ? In Python
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Contributing to Pinocchio

� GitHub project
� https://github.com/stack-of-tasks/pinocchio

� Post issues for contributing

� We are looking for doc-devs!
� Feedback some material as a thank-you note
� In the doc: “examples” is waiting for you

4



MEMMO: Memory of Motion – www.memmo-project.eu

C++ / Python

� C++ Library
� Fast, careful implementation
� Using curiously recursive template pattern (CRTP)
� You likely don’t want to develop code there
� Using it is not so complex (think Eigen)

� Python bindings
� A 1-to-0.99 map from C++ API to Python API
� Start by developing in Python
� Beware of the lack of accuracy … speed is ok
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Modeling and optimizing

� Pinocchio is a modeling library
� Not an application
� Not a solver
� Some key features directly available

� You don’t want the solver inside Pinocchio
� Inverse dynamics: TSID
� Planning and contact planning: HPP
� Optimal control: Crocodyl
� Optimal estimation, reinforcement learning, inverse 

kinematics, contact simulation …
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List of features

� URDF parser
� Forward kinematics and Jacobians
� Mass, center of mass and gen.inertia matrix
� Forward and inverse dynamics
� Model display (with Gepetto-viewer)
� Collision detection and distances (with HPP-FCL)
� Derivatives of kinematics and dynamics
� Type templatization and code generation
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TSID

� Pinocchio for
� Computing the inertia matrix, jacobians, kinematics

� Formulation of tasks
� Contact models
� QP resolution
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HPP planner

� Pinocchio for
� Geometry, collision (hpp-fcl)
� Projectors with inverse kinematics
� Balance constraint with dynamics

� Pinocchio encapsulated in hpp-Pinocchio
� Stochastic exploration algorithm (RRT)
� Contact checking
� Re-arrangement algorithms
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Crocoddyl

� Pinocchio for
� Kinematics and dynamics
� And their derivatives
� Display with Gepetto-viewer

� DDP optimizer
� Task/cost formulation
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Representing the physical world

p Ap

A

This is a point This is not a point
This is the representation of a point
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Representing the physical world

� Pinocchio is a model
� Of course, models are wrong 

� The way you represent geometry matters
� Example of SO(3)

� r is a map from E(3) to E(3)
� R is a othonormal positive matrix
� w is a 3D vector
� q is a quaternion represented as a 4D vector
� Roll-Pitch-Yaw & other Euler angles should not be used
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Pinocchio bases
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Basics

� Urdf model
� Kinematic tree
� Forward kinematics
� Display
� Spatial algebra
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Kinematic tree

� Inside robot model:
� joints: joint types and indices
� names: joint names
� jointPlacements: constant placement wrt parent
� parents: hierarchy of joints representing the tree

� No bodies
� masses and geoms are attached as tree decorations

� First joint represent the universe
� If nq==7 then len(rmodel.joints)==8
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Kinematic tree
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Direct geometry

l2

l1

M(q)   = l1 cos(q1) + l2 cos(q1+q2)
l1 sin(q1) + l2 sin(q1+q2) 

q1

q2
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Direct geometry

� The geometric model is a tree of joints and bodies

M1

M2

M1(q1)

M3

M2(q2)

M4

M3(q3)

M4(q4)

M(q) = M1 � M1(q1) � M2 � … � M4 � M4(q4)

Me

� Me
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Direct and inverse functions

� Direct geometry
h: q o h(q),    C1 continuous function

� Direct kinematics
v: q, ሶqo v (q, ሶq) = J(q) ሶq

� Inverse geometry
� Ill defined, singular points
� Numerical inversion by Newton descent

� Integration of the descent
� Robot trajectory
� Quadratic problem at each step

v1

v2
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Display

� Gepetto-viewer is a display server
� Python can create a client to this server

� Gepetto-viewer does not know the kinematic tree
� Pinocchio must place the bodies
� RobotWrapper is doing that for you (not in C++)
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Spatial algebra
� M: placement in SE3
� Q: “spatial” velocity of SE3

� ሶ𝑀=Q ×𝑀
� D: “spatial” acceleration in SE3

� Q � M6 = se(3)
� D � M6 = se(3)
� 𝛼 = ሶQ

� I: “spatial” force in SE3
� Power P = < I | Q> = AIT AQ � R
� K � F6 : momentum

� Y: “spatial” inertia in SE3
� K = Y Q
� I = Y D

iamarolot
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Placement
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Displacements
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Velocities
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Acceleration
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Derivatives

𝐴 𝑑
𝑑𝑡
Q = 𝑑

𝑑𝑡
𝐴Q+ 𝐴Q𝐴 × 𝐴Q

𝐴 𝑑
𝑑𝑡

φ = 𝑑
𝑑𝑡

𝐴φ + 𝐴Q𝐴 × 𝐴φ
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Inertias
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Model and data

� Pinocchio.Model should be constant
� Kinematic tree, joint model, masses, placements …
� Plain names used here

� Pinocchio.Data is modified by the algorithms
� oMi, v, a
� J, Jcom
� M
� tau, nle

� 1 Model, several Data
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min
𝑋,𝑈

𝑙𝑇 𝑥𝑇 +෍
𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡

s.t. 𝑥t+1 = f(xt,ut )
1 model
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Forward kinematics
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Forward kinematics

� pinocchio.forwardKinematics(rmodel,rdata,
q,vq,aq)

� Compute all the joint placements in data.oMi

� M = data.oMi[-1]  : last placement
� R = M.rotation
� p = M.translation
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NumPy Array vs Matrix

� Pinocchio works with NumPY.Matrix
� R is a matrix
� p is a 1d matrix: p.shape == (3,1)
� You can multiply R*p

� NumPy works better with Array
� np.zeros([3,3]) is an array
� You cannot multiply array 

� Use np.dot    or obtain a coefficient-wise multiplication

� SciPy works with array too
35
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SciPy optimizer

from scipy.optimize import fmin_slsqp
fmin_slsqp?

fmin_slsqp(x0 = np.zeros(7),
func= costFunction,
f_eqcons = constraintFunction,
callback = callbackFunction)
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SciPy optimizer

� Make the optimization problem a class:
� Problem parameters in the __init__
� Cost method taking x as input
� Constraint and callback method if need be
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SciPy optimizer

class OptimProblem:
def __init__(self,rmodel):

# Put your parameters here
self.rmodel = rmodel
self.rdata = self.rmodel.createData()

def cost(self,x): return sum( x**2 )
def callback(self,x): print(self.cost(x))

pbm = OptimProblem(robot.model)
fmin_slsqp(x0=x0,func=pbm.cost,callback=pbm.callback)

38
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Joint and frames

� Joint frames 
� Skeleton of the kinematic chain
� Computed by forward kinematics in rdata.oMi

� “Operational” frames
� Added as decoration to the tree
� Placed with respect to a joint parent
� Stored in rmodel.frames
� Computed by updateFramePlacements in rdata.oMf
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Joint limits

� Parsed from urdf
� In rmodel.lowerPositionLimits and 

rmodel.upperPositionLimits

� Beware, infinity by default
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Log and difference
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Position versus placement

� Difference of positions
� residuals = p-p*

� Diffence of rotations
� residuals = log3( RT R*)

� Diffence of placements
� residuals = log6( M-1 M*)
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Free flyer joint

� Revolute joint
� q of dimension one, 𝑣𝑞 = ሶ𝑞

� Free flyer
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Integrate and differenciate

qnext = pinocchio.integrate(q,vq)   �� Q

qnext = q�vq

Δq = vq = pinocchio.difference(q1,q2) �� Tq1Q

Δq = q2 (-) q1
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Integrate and differenciate

� On a Matrix Lie Group

q�vq = Matrix(q) exp(skew(vq)) = Q Exp(vq)

q2 (-) q1 = log( Q2
-1 Q1)
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Optimization with Q / TQ

� q = (x,y,z, q, …)  with q unitary 

� What is the result with a solver ?

49
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Solution 1: normalized

def constraint_q(self, x):
return norm(x[3:7])-1)
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Solution 2: reparametrize

� We represent q 
� as the displacement vq

� from a reference configuration q0

q = q0 � vq
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Random configuration

pinocchio.randomConfiguration(rmodel)

52



MEMMO: Memory of Motion – www.memmo-project.eu
53



MEMMO: Memory of Motion – www.memmo-project.euMEMMO: Memory of Motion – www.memmo-project.eu 54

Part II
Differencial kinematics
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Working in manifolds
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Manifold-to-manifold maps

� Function f:
� From manifold to manifold
� M: q � Q  o M(q) � SE3

� Derivative Fx
� From tangent to tangent
� Mq : vq � TQ  o Q � M6

� Q(q,vq) = J(q) vq
� J: from vector to vector 

57
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Manifold
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Consequence

� You should know in which tangent space you work
� Typically at the local point, or at the origin

Q(q,vq)   = J(q) vq

� In Pinocchio, 
the velocity are often represented locally

� Velocity of the free flyer in the frame of the hip

58
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Finite differences
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Robot jacobian
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Joint jacobian

� Computed by two steps:
� computeJointJacobians(rmodel,rdata,q)

� getJointJacobian(rmodel,rdata,IDX,LOCAL/GLOBAL)

� From local to global
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Frame jacobian

� Just add the additional displacement

� 4 steps
ComputeJointJacobian
updateFramePlacements
getFrameJacobian
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Cost jacobian
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Chain rule 

Cost(q) = log(M(q)) 
Cost = log o M

Cost_q = log_M M_q

M_q ?
log_M

67
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Log jacobian

� Computed in pinocchio

� Pinocchio.Jlog

68
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Free-flyer reparam
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� Recall q = q0 � vq = r(vq)
� c(vq) = log(M(r(vq)))

� Chain rule …
� r(v) = integrate(q0,v)
� R_v = dIntegrate_dv (q0,v)
� Not implemented yet in Pinocchio
� But it is the inverse of dDiffence which is implemented

70
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Part III
Dynamics
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Dynamics of articulated bodies

� Dynamic equation of the robot
𝑀 𝑞 ሶ𝑣𝑞 + 𝑐 𝑞, 𝑣𝑞 + 𝑔 𝑞 = 𝜏𝑞
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Dynamics of articulated bodies

� Dynamic equation of the robot
𝑀 𝑞 ሶ𝑣𝑞 + 𝑐 𝑞, 𝑣𝑞 + 𝑔 𝑞 = 𝜏𝑞

� Actuation of the robot
� Fixed manipulator:   𝜏𝑞 = 𝜏𝑚

� Floating robot:   𝜏𝑞 =
0
𝜏𝑚

= 𝑆𝑇𝜏𝑚

� Robot in contact: :   𝜏𝑞 = 𝑆𝑇𝜏𝑚 + 𝐽𝑇 I
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An intuition of M?
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RNEA algorithm
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Other algorithms

� CRBA

� ABA

� ComputeAllTerms
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RNEA with forces
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Contact inverse dynamics
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Optimization problem

min
𝜏,𝜑

𝑀 ሶ𝑣𝑞 + 𝑏 𝑞, 𝑣𝑞 − 𝜏 − 𝐽𝑇𝜑

81
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Optimization problem

� OptimProblem class
� With a x2var function that makes the dispatch

� It is a linear problem: we should not use NLP

� See TSID tomorrow
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