
MEMMO: Memory of Motion – www.memmo-project.euMEMMO: Memory of Motion – www.memmo-project.eu

Pinocchio
Fast forward & inverse dynamics

Nicolas Mansard
(CNRS)

MEMMO: Memory of Motion – www.memmo-project.eu

Gurus

2

Justin Carpentier (INRIA) Roy Featherstone (IIT)

MEMMO: Memory of Motion – www.memmo-project.eu

WWW Material

� Web site
� https://stack-of-tasks.github.io/pinocchio

� Doxygen
� Documentation tab on github.io

� Tutorials:
� Practical exercices in the documentation

� Also use the ? In Python
3

MEMMO: Memory of Motion – www.memmo-project.eu

Contributing to Pinocchio

� GitHub project
� https://github.com/stack-of-tasks/pinocchio

� Post issues for contributing

� We are looking for doc-devs!
� Feedback some material as a thank-you note
� In the doc: “examples” is waiting for you

4

MEMMO: Memory of Motion – www.memmo-project.eu

C++ / Python

� C++ Library
� Fast, careful implementation
� Using curiously recursive template pattern (CRTP)
� You likely don’t want to develop code there
� Using it is not so complex (think Eigen)

� Python bindings
� A 1-to-0.99 map from C++ API to Python API
� Start by developing in Python
� Beware of the lack of accuracy … speed is ok

5

MEMMO: Memory of Motion – www.memmo-project.eu

Modeling and optimizing

� Pinocchio is a modeling library
� Not an application
� Not a solver
� Some key features directly available

� You don’t want the solver inside Pinocchio
� Inverse dynamics: TSID
� Planning and contact planning: HPP
� Optimal control: Crocodyl
� Optimal estimation, reinforcement learning, inverse

kinematics, contact simulation …

6

MEMMO: Memory of Motion – www.memmo-project.eu

List of features

� URDF parser
� Forward kinematics and Jacobians
� Mass, center of mass and gen.inertia matrix
� Forward and inverse dynamics
� Model display (with Gepetto-viewer)
� Collision detection and distances (with HPP-FCL)
� Derivatives of kinematics and dynamics
� Type templatization and code generation

7

MEMMO: Memory of Motion – www.memmo-project.eu

TSID

� Pinocchio for
� Computing the inertia matrix, jacobians, kinematics

� Formulation of tasks
� Contact models
� QP resolution

8

MEMMO: Memory of Motion – www.memmo-project.eu

HPP planner

� Pinocchio for
� Geometry, collision (hpp-fcl)
� Projectors with inverse kinematics
� Balance constraint with dynamics

� Pinocchio encapsulated in hpp-Pinocchio
� Stochastic exploration algorithm (RRT)
� Contact checking
� Re-arrangement algorithms

9

MEMMO: Memory of Motion – www.memmo-project.eu

Crocoddyl

� Pinocchio for
� Kinematics and dynamics
� And their derivatives
� Display with Gepetto-viewer

� DDP optimizer
� Task/cost formulation

10

MEMMO: Memory of Motion – www.memmo-project.eu

Representing the physical world

p Ap

A

This is a point This is not a point
This is the representation of a point

MEMMO: Memory of Motion – www.memmo-project.eu

Representing the physical world

� Pinocchio is a model
� Of course, models are wrong

� The way you represent geometry matters
� Example of SO(3)

� r is a map from E(3) to E(3)
� R is a othonormal positive matrix
� w is a 3D vector
� q is a quaternion represented as a 4D vector
� Roll-Pitch-Yaw & other Euler angles should not be used

12

MEMMO: Memory of Motion – www.memmo-project.eu
13

MEMMO: Memory of Motion – www.memmo-project.eu
14

Pinocchio bases

MEMMO: Memory of Motion – www.memmo-project.eu

Basics

� Urdf model
� Kinematic tree
� Forward kinematics
� Display
� Spatial algebra

15

MEMMO: Memory of Motion – www.memmo-project.eu

Kinematic tree

� Inside robot model:
� joints: joint types and indices
� names: joint names
� jointPlacements: constant placement wrt parent
� parents: hierarchy of joints representing the tree

� No bodies
� masses and geoms are attached as tree decorations

� First joint represent the universe
� If nq==7 then len(rmodel.joints)==8

16

MEMMO: Memory of Motion – www.memmo-project.eu

Kinematic tree

17

jhpyter notebook

↳ go
in WS memory

- pinocchio
Open A

. .

.
.

geppetto - gui

MEMMO: Memory of Motion – www.memmo-project.eu

Direct geometry

l2

l1

M(q) = l1 cos(q1) + l2 cos(q1+q2)
l1 sin(q1) + l2 sin(q1+q2)

q1

q2

MEMMO: Memory of Motion – www.memmo-project.eu

Direct geometry

� The geometric model is a tree of joints and bodies

M1

M2

M1(q1)

M3

M2(q2)

M4

M3(q3)

M4(q4)

M(q) = M1 � M1(q1) � M2 � … � M4 � M4(q4)

Me

� Me

MEMMO: Memory of Motion – www.memmo-project.eu

Direct and inverse functions

� Direct geometry
h: q o h(q), C1 continuous function

� Direct kinematics
v: q, ሶqo v (q, ሶq) = J(q) ሶq

� Inverse geometry
� Ill defined, singular points
� Numerical inversion by Newton descent

� Integration of the descent
� Robot trajectory
� Quadratic problem at each step

v1

v2

MEMMO: Memory of Motion – www.memmo-project.eu

Display

� Gepetto-viewer is a display server
� Python can create a client to this server

� Gepetto-viewer does not know the kinematic tree
� Pinocchio must place the bodies
� RobotWrapper is doing that for you (not in C++)

21

MEMMO: Memory of Motion – www.memmo-project.eu

Spatial algebra
� M: placement in SE3
� Q: “spatial” velocity of SE3

� ሶ𝑀=Q ×𝑀
� D: “spatial” acceleration in SE3

� Q � M6 = se(3)
� D � M6 = se(3)
� 𝛼 = ሶQ

� I: “spatial” force in SE3
� Power P = < I | Q> = AIT AQ � R
� K � F6 : momentum

� Y: “spatial” inertia in SE3
� K = Y Q
� I = Y D

iamarolot

MEMMO: Memory of Motion – www.memmo-project.eu

Placement

23

an

:¥:
"

⇒

I¥:÷÷÷.

.

MEMMO: Memory of Motion – www.memmo-project.eu

Displacements

24

Apb It

Apfel = And p

this

MEMMO: Memory of Motion – www.memmo-project.eu

Velocities

25

& g
in -

.

ox n d NbaFeat -

- ① It*Ari, =
AuxAns U

At inD= AND MX N W P

" ::*:* it :'
¥7

-

MEMMO: Memory of Motion – www.memmo-project.eu

Acceleration

26

A = I

e- ¥1 :
. . .

.

.

: ta

.

MEMMO: Memory of Motion – www.memmo-project.eu

Derivatives

𝐴 𝑑
𝑑𝑡
Q = 𝑑

𝑑𝑡
𝐴Q+ 𝐴Q𝐴 × 𝐴Q

𝐴 𝑑
𝑑𝑡

φ = 𝑑
𝑑𝑡

𝐴φ + 𝐴Q𝐴 × 𝐴φ

27

MEMMO: Memory of Motion – www.memmo-project.eu

Inertias

28

ay-

- Imo" :?
Y .

.

L - y
-

- Ya

MEMMO: Memory of Motion – www.memmo-project.eu
29

Bp→Ap = And Bp

Av ←
Bv pity

if = (ArgAmmann
's)

BV

Byvtaxoc-finy.si/vwA4TAV--HtJVAy=A4pg.,nn
,

am)
¥7" "

ay
,
=

ME

MEMMO: Memory of Motion – www.memmo-project.eu

Model and data

� Pinocchio.Model should be constant
� Kinematic tree, joint model, masses, placements …
� Plain names used here

� Pinocchio.Data is modified by the algorithms
� oMi, v, a
� J, Jcom
� M
� tau, nle

� 1 Model, several Data

30

MEMMO: Memory of Motion – www.memmo-project.eu
31

min
𝑋,𝑈

𝑙𝑇 𝑥𝑇 +෍
𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡

s.t. 𝑥t+1 = f(xt,ut)
1 model

MEMMO: Memory of Motion – www.memmo-project.eu
32

MEMMO: Memory of Motion – www.memmo-project.eu
33

Forward kinematics

MEMMO: Memory of Motion – www.memmo-project.eu

Forward kinematics

� pinocchio.forwardKinematics(rmodel,rdata,
q,vq,aq)

� Compute all the joint placements in data.oMi

� M = data.oMi[-1] : last placement
� R = M.rotation
� p = M.translation

34

MEMMO: Memory of Motion – www.memmo-project.eu

NumPy Array vs Matrix

� Pinocchio works with NumPY.Matrix
� R is a matrix
� p is a 1d matrix: p.shape == (3,1)
� You can multiply R*p

� NumPy works better with Array
� np.zeros([3,3]) is an array
� You cannot multiply array

� Use np.dot or obtain a coefficient-wise multiplication

� SciPy works with array too
35

MEMMO: Memory of Motion – www.memmo-project.eu

SciPy optimizer

from scipy.optimize import fmin_slsqp
fmin_slsqp?

fmin_slsqp(x0 = np.zeros(7),
func= costFunction,
f_eqcons = constraintFunction,
callback = callbackFunction)

36

MEMMO: Memory of Motion – www.memmo-project.eu

SciPy optimizer

� Make the optimization problem a class:
� Problem parameters in the __init__
� Cost method taking x as input
� Constraint and callback method if need be

37

MEMMO: Memory of Motion – www.memmo-project.eu

SciPy optimizer

class OptimProblem:
def __init__(self,rmodel):

Put your parameters here
self.rmodel = rmodel
self.rdata = self.rmodel.createData()

def cost(self,x): return sum(x**2)
def callback(self,x): print(self.cost(x))

pbm = OptimProblem(robot.model)
fmin_slsqp(x0=x0,func=pbm.cost,callback=pbm.callback)

38

MEMMO: Memory of Motion – www.memmo-project.eu
39

MEMMO: Memory of Motion – www.memmo-project.eu
40

Frames &+

MEMMO: Memory of Motion – www.memmo-project.eu

Joint and frames

� Joint frames
� Skeleton of the kinematic chain
� Computed by forward kinematics in rdata.oMi

� “Operational” frames
� Added as decoration to the tree
� Placed with respect to a joint parent
� Stored in rmodel.frames
� Computed by updateFramePlacements in rdata.oMf

41

on flat -

-
Oni lat int
¥ Toutant

MEMMO: Memory of Motion – www.memmo-project.eu

Joint limits

� Parsed from urdf
� In rmodel.lowerPositionLimits and

rmodel.upperPositionLimits

� Beware, infinity by default

42

MEMMO: Memory of Motion – www.memmo-project.eu
43

MEMMO: Memory of Motion – www.memmo-project.eu
44

Log and difference

MEMMO: Memory of Motion – www.memmo-project.eu

Position versus placement

� Difference of positions
� residuals = p-p*

� Diffence of rotations
� residuals = log3(RT R*)

� Diffence of placements
� residuals = log6(M-1 M*)

45

play : 059 - sad

= RE R

R =

°

Ri pit ! A

RT Rt = irony =
i R 't

MEMMO: Memory of Motion – www.memmo-project.eu

Free flyer joint

� Revolute joint
� q of dimension one, 𝑣𝑞 = ሶ𝑞

� Free flyer

46

x
, y ,

Z
, of

1191¥

MEMMO: Memory of Motion – www.memmo-project.eu

Integrate and differenciate

qnext = pinocchio.integrate(q,vq) �� Q

qnext = q�vq

Δq = vq = pinocchio.difference(q1,q2) �� Tq1Q

Δq = q2 (-) q1

47

MEMMO: Memory of Motion – www.memmo-project.eu

Integrate and differenciate

� On a Matrix Lie Group

q�vq = Matrix(q) exp(skew(vq)) = Q Exp(vq)

q2 (-) q1 = log(Q2
-1 Q1)

48

MEMMO: Memory of Motion – www.memmo-project.eu

Optimization with Q / TQ

� q = (x,y,z, q, …) with q unitary

� What is the result with a solver ?

49

MEMMO: Memory of Motion – www.memmo-project.eu

Solution 1: normalized

def constraint_q(self, x):
return norm(x[3:7])-1)

50

MEMMO: Memory of Motion – www.memmo-project.eu

Solution 2: reparametrize

� We represent q
� as the displacement vq

� from a reference configuration q0

q = q0 � vq

51

MEMMO: Memory of Motion – www.memmo-project.eu

Random configuration

pinocchio.randomConfiguration(rmodel)

52

MEMMO: Memory of Motion – www.memmo-project.eu
53

MEMMO: Memory of Motion – www.memmo-project.euMEMMO: Memory of Motion – www.memmo-project.eu 54

Part II
Differencial kinematics

MEMMO: Memory of Motion – www.memmo-project.eu
55

MEMMO: Memory of Motion – www.memmo-project.eu
56

Working in manifolds

MEMMO: Memory of Motion – www.memmo-project.eu

Manifold-to-manifold maps

� Function f:
� From manifold to manifold
� M: q � Q o M(q) � SE3

� Derivative Fx
� From tangent to tangent
� Mq : vq � TQ o Q � M6

� Q(q,vq) = J(q) vq
� J: from vector to vector

57

Tangent

Manifold

MEMMO: Memory of Motion – www.memmo-project.eu

Consequence

� You should know in which tangent space you work
� Typically at the local point, or at the origin

Q(q,vq) = J(q) vq

� In Pinocchio,
the velocity are often represented locally

� Velocity of the free flyer in the frame of the hip

58

i
n
.

A A

MEMMO: Memory of Motion – www.memmo-project.eu
59

MEMMO: Memory of Motion – www.memmo-project.eu
60

Finite differences

MEMMO: Memory of Motion – www.memmo-project.eu
61

MEMMO: Memory of Motion – www.memmo-project.eu
62

Robot jacobian

MEMMO: Memory of Motion – www.memmo-project.eu

Joint jacobian

� Computed by two steps:
� computeJointJacobians(rmodel,rdata,q)

� getJointJacobian(rmodel,rdata,IDX,LOCAL/GLOBAL)

� From local to global

63

°Jvg = OU OX ;
iv =

ou

izrg = iv
oxiiy -

- of

MEMMO: Memory of Motion – www.memmo-project.eu

Frame jacobian

� Just add the additional displacement

� 4 steps
ComputeJointJacobian
updateFramePlacements
getFrameJacobian

64

i

xf iz
fy=ixf

' i

2

MEMMO: Memory of Motion – www.memmo-project.eu
65

MEMMO: Memory of Motion – www.memmo-project.eu
66

Cost jacobian

MEMMO: Memory of Motion – www.memmo-project.eu

Chain rule

Cost(q) = log(M(q))
Cost = log o M

Cost_q = log_M M_q

M_q ?
log_M

67

MEMMO: Memory of Motion – www.memmo-project.eu

Log jacobian

� Computed in pinocchio

� Pinocchio.Jlog

68

MEMMO: Memory of Motion – www.memmo-project.eu
69

Free-flyer reparam

MEMMO: Memory of Motion – www.memmo-project.eu

� Recall q = q0 � vq = r(vq)
� c(vq) = log(M(r(vq)))

� Chain rule …
� r(v) = integrate(q0,v)
� R_v = dIntegrate_dv (q0,v)
� Not implemented yet in Pinocchio
� But it is the inverse of dDiffence which is implemented

70

MEMMO: Memory of Motion – www.memmo-project.eu
71

MEMMO: Memory of Motion – www.memmo-project.euMEMMO: Memory of Motion – www.memmo-project.eu 72

Part III
Dynamics

MEMMO: Memory of Motion – www.memmo-project.eu

Dynamics of articulated bodies

� Dynamic equation of the robot
𝑀 𝑞 ሶ𝑣𝑞 + 𝑐 𝑞, 𝑣𝑞 + 𝑔 𝑞 = 𝜏𝑞

MEMMO: Memory of Motion – www.memmo-project.eu

Dynamics of articulated bodies

� Dynamic equation of the robot
𝑀 𝑞 ሶ𝑣𝑞 + 𝑐 𝑞, 𝑣𝑞 + 𝑔 𝑞 = 𝜏𝑞

� Actuation of the robot
� Fixed manipulator: 𝜏𝑞 = 𝜏𝑚

� Floating robot: 𝜏𝑞 =
0
𝜏𝑚

= 𝑆𝑇𝜏𝑚

� Robot in contact: : 𝜏𝑞 = 𝑆𝑇𝜏𝑚 + 𝐽𝑇 I

MEMMO: Memory of Motion – www.memmo-project.eu

An intuition of M?

75

MEMMO: Memory of Motion – www.memmo-project.eu

RNEA algorithm

76

nigra
→

RNE 't!IIIa spa

A-
'

f 2g - Hgira)) = Tl
→ ABAL gig ,

2g)
40ps

N : CRBA
2µs

be -

- meal g. ra
,

o) → compute Athens 1) II
3µs

MEMMO: Memory of Motion – www.memmo-project.eu

Other algorithms

� CRBA

� ABA

� ComputeAllTerms

77

MEMMO: Memory of Motion – www.memmo-project.eu

RNEA with forces

78

N rig tbh
.

Nal t sty → week
, Miri ,

→
[Yo .

.

. Yn))
i

y ← only for jab

MEMMO: Memory of Motion – www.memmo-project.eu
79

MEMMO: Memory of Motion – www.memmo-project.eu
80

Contact inverse dynamics

MEMMO: Memory of Motion – www.memmo-project.eu

Optimization problem

min
𝜏,𝜑

𝑀 ሶ𝑣𝑞 + 𝑏 𝑞, 𝑣𝑞 − 𝜏 − 𝐽𝑇𝜑

81

2

MEMMO: Memory of Motion – www.memmo-project.eu

Optimization problem

� OptimProblem class
� With a x2var function that makes the dispatch

� It is a linear problem: we should not use NLP

� See TSID tomorrow

82

