European |
Commission

Introduction to Deep
Reinforcement Learning

. 0@1\‘1:/”
.
A
-
v/
(- }
-~
/. ™ NI
< & q
Vs N
ICanD [)[\1\\\‘\ MAN-PLANCK-GESELLSCHAFT

PAL e

ROBOTICS Wandercraft

- :\%’o
& AIRBUS 3¢ ppp JH

MEMMO: Memory of Motion — www.memo-project.eu

What is reinforcement learning!?

memmo
Egia’;‘;‘i’r:ceme”t Dynamic Programming
Y e | and Optimal Control

APPROXIMATE DYNAMIC PROGRAMMING

Richard S. Sutton and Andrew G. Barto

Jens Kober et al.“Reinforcement Learning in
Robotics: A Survey”, ||RR 2013

MEMMO: Memory of Motion — www.memo-project.eu

memmo

state

What is reinforcement learning!?

reward

action POIICY
A’ At — 7T St

St—l—l — f(St7 At)

Markov Decision Process

MEMMO: Memory of Motion — www.memo-project.eu

?

What is reinforcement learning!?

Typical RL problems Robotics RL problems

State is discrete (countable) State is continuous

Set of actions is discrete Action space is continuous

Most methods designed for discrete
state/action models do not carry over

to continuous sate/action models

MEMMO: Memory of Motion — www.memo-project.eu

What is the difference with O.C.?

memmo

Reinforcement learning Optimal Control

min » ~ RRSGSAA:) min » Cy(S, Ay)

Sevr= ¢ Sei1 = F(Si, Ar)
In RL we do not know the Our typical optimal control
dynamic model setup (cf. DDP tutorial)

MEMMO: Memory of Motion — www.memo-project.eu

Model-based reinforcement learning

memmo

Reinforcement learning

min Z C(St, Ay)
[

Sii1= ¢

Model-based reinforcement learning => Sample the world, learn a
model (i.e. system identification) and then do optimal control

[Schaal and Atkeson, Control Systems Magazine, |1994]

[Levine and Koltun, ICML, 201 3]

MEMMO: Memory of Motion — www.memo-project.eu

Model-free reinforcement learning

memmo

Reinforcement learning

min Z C(St, Ay)
[

St41 = 7

lgnore the model and learn directly the policy (or an
approximation of the value function to infer the policy)
=> Q-learning, actor-critic algorithms, policy gradients, etc

MEMMO: Memory of Motion — www.memo-project.eu

Let’s go back to Bellman

min Z W/t C' (St, At) Y Discount factor

Bellman’s Equations (infinite horizon case)
V(St)

Valu V(S) is the unique solution of this
.e. optimal equatic.m within the class of bou.nded
obtained| functions (necessary and sufficient
opti condition for optimality)

MEMMO: Memory of Motion — www.memo-project.eu

q';gl Value Iteration

V(St) — H}litn (Ct(St, At) -+ /VV(St—I—l))

Start with an initial guess forV — Vg

Iterate the Bellman Equation for each state S;

Vit1(S:) = Igiﬂ(ct(sta Ap) + Vi (Si41))

One can show that V,, = V when n — o0

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

Get out of the maze
- Red is bad (+| cost)
- Green is good (-1 cost)
- Possible actions (N,E,WV,S)
- v=20.9

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

memmo

= Initialize Vo

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

memmo

- First iteration of Bellman
(we update every state)

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

= 2nd Iteration

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

= 3rd lteration

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

= 4th lteration

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

-4.15 -5.86 - 10th Iteration
277] 342

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

-7.29 un - 100th Iteration
m

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

-7.29 un - 1000th Iteration
m

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

- 1000th Iteration

7.29 We have converged and found
the optimal value function
-6.56

The policy is read out by
following the action that
creates the lowest next value
+ current cost

-5.9 [-6.56]-7.29]-6.56

MEMMO: Memory of Motion — www.memo-project.eu

Canonical Example

= |000th Iteration

We have converged and found
the optimal value function

The policy is read out by
following the action that
creates the highest next value

MEMMO: Memory of Motion — www.memo-project.eu

L Policy Iteration

Start with an initial guess for the policy mo(S:)
and value function V (S;)

|. Policy evaluation

Iterate the Bellman Equation for each state S;
using the current policy for transition

Vir1(Se) = Cy(Se, T (St)) + YV (St41)

2. Policy update

Given the current guess forV find a new policy
such that 7Tk_|_1(St) = arg min Ct(St, At) + ’}/V(Sﬂ_l)

MEMMO: Memory of Motion — www.memo-project.eu

What about learning?

memmo

MEMMO: Memory of Motion — www.memo-project.eu

IE€) Q-learning: value iteration with a twist
"'e'""'° [Watkins 1989]

Introduce the Q-function Q(S;, A;)

which stores for each state/action pairs the cost of performing
A: and then using the optimal policy afterwards

Q(St, Ar) = Cr + YV (Si41) » V(S:) = 111‘14131 Q(St, As)

Fortunately, the Q-function also satisfies Bellman’s equation

Q(St7 At) — Ct(Sta At) 7y min Q(St—l—la At—l—l)

A¢qq

MEMMO: Memory of Motion — www.memo-project.eu

IE€) Q-learning: value iteration with a twist
"'e"‘"'° [Watkins 1989]

If we choose any random action Acand observe what reward C; we
get then if our Q-function guess was correct we should have

Q(Sta At) — Ct(St7 At) T Y min Q(St—l-h At—|-1)

Apyq

So if this is not the case, then we can estimate ‘“how
wrong we are” and update Q accordingly

Qnew(st’ At) . (1 _ OZ)Q(Sta At) -+ CM(Ct(St, At) + ’)/leiﬂ Q(St—l—la A))

a is the learning rate between 0 and |

MEMMO: Memory of Motion — www.memo-project.eu

Q-learning: value iteration with a twist

memmo [Watkins 1989]

When dealing with discrete state/action spaces (and
moderate size for this space) we can store the Q-
function as a table indexed by actions and states

Q-learning with a table
Choose a € (0,1] and small e >0 Initialize Q(S, A) arbitrarily

For each episode:
Start from an initial state Sy
Loop for each step ¢ of the episode:
Choose A; from S; using a policy using @) (e.g. e-greedy policy)
Take action A; and observe cost Cy(S;, A¢) and next state Syiq
Update Q(S;, A¢) + (1 — a)Q(St, Ar) + a(Cy(St, Ar) + 'ymjn Q(St11,A))

Do until convergence

MEMMO: Memory of Motion — www.memo-project.eu

Practical Example

Break

Exercise on Q-learning with a table
Discretized states and actions

MEMMO: Memory of Motion — www.memo-project.eu

BE€) Q-learning with function approximation

memmo

Q-learning with a table cannot work for high-dimensional
spaces nor for continuous state/action spaces!

|dea: replace the table with a function approximator (e.g. a
neural network) - still assume discrete number of actions

Q(5,4) ~Q(5, 4,0

Neural network weights

‘ Q-value

(one number)

BE€) Q-learning with function approximation

memmo

The problem can be written as a least square problem

min [[Q(S1. 4(8) — Cu(S1. A1) — ¥ min Q(S1i1, AF) 1P

BE€) Q-learning with function approximation

memmo

Problem: a direct (naive) approach using solely current
episode data tend to be unstable (i.e. it diverges):

- The sequence of observations are correlated

- Small changes in Q can lead to large changes in policy

MEMMO: Memory of Motion — www.memo-project.eu

Deep Q-network (DQN)

memmao

[Mnih et al,, Nature, 201 5]

MEMMO: Memory of Motion — www.memo-project.eu

Deep Q-network (DQN)

memmo

Problem: a direct (naive) approach using solely current
episode data tend to be unstable (i.e. it diverges):

- The sequence of observations are correlated

- Small changes in Q can lead to large changes in policy

Solution

|) Use a“replay” memory of a previous samples from which we
randomly sample the next training batch (remove correlations)

2) Use 2 Q-network to avoid correlations due to updates

Target Q—network

L Deep Q-network (DQN)

memmo

[Mnih et al,, Nature, 201 5]
Initialize replay memory D of size NV

Initialize Q-network with random weights 6

Initialize target Q) function with weights 6~ = 6

For each episode:
Start from an initial state Sy
Loop for each step ¢ of the episode:
Choose A; from S; using a policy using) (e.g. e-greedy policy)

Take action A; and observe cost C;(S¢, A;) and next state Syiq
Store (S;, A¢, Cy, Sia1) in memory D

Sample minibatch of transitions (S5;, A4;,C;,S;+1) from memory D

Gradient descent on 6 to minimize ||Q(S;, A;,0)—C;—yming Q(S;41, A,07)||?
Every C' steps reset 6= =6

MEMMO: Memory of Motion — www.memo-project.eu

-network (DQN)

MEMMO: Memory of Motion — www.memo-project.eu

Deep Q-network (DQN)

memmo

[Mnih et al,, Nature, 201 5]

MEMMO: Memory of Motion — www.memo-project.eu

Practical Example

Break

Let’s replace the table with a neural network
|) Just replace Q-table with the NN
2) DQON (replay memory, target, etc)

MEMMO: Memory of Motion — www.memo-project.eu

L What about continuous action space!

memmo

Problem: we need to evaluate the min to be able to do Q-
learning with a function approximator

1Q(S;, Aj,0)—C;—yming Q(S;11,4,07)||?

Solution: use another neural network to approximate the
min operator (i.e.to approximate the optimal policy)
=> Actor-critic algorithm

MEMMO: Memory of Motion — www.memo-project.eu

First we need a gradient for the policy

memmo

Let 7(S¢, ™) an approximation of a policy with a NN (weights 6™)

&
N
.;\:?

‘ .

Input S

MEMMO: Memory of Motion — www.memo-project.eu

First we need a gradient for the policy

memmo

Let 7(S¢, ™) an approximation of a policy with a NN (weights 6™)
Let J.(S;) be the value function under policy =
We would like to find the gradient Vg~ J, to improve w

The policy gradient theorem (cf. Sutton-Barto book) tells us that

Vord ~ 5 5. VaQ(S, A, 09)|s=s, a=r(s;) Vo= (S;,07)

=> we can do gradient descent on the policy
parameters to minimize the value function

MEMMO: Memory of Motion — www.memo-project.eu

memmo [Lillicrap et al., ICML, 2016]

Policy network (actor) - Q-network (critic)
DDPG => Same as DQN + policy network

(Q-network Target Q-network

MEMMO: Memory of Motion — www.memo-project.eu

(Deep Deterministic Policy Gradient)

memmo -
Initialize replay memory D of size IV [Lillicrap et al., ICML, 2016}

Initialize Q- and policy networks with random weights % and 67
Set target networks A9 = 69 and 6™ = O~

For each episode:

Start from an initial state Sy

Loop for each step ¢ of the episode:
Choose A; = w(S:) + noise (to explore a bit)
Take action A; and observe cost C;(S¢, A;) and next state Syiq
Store (S;, A¢, Cy, Si11) in memory D
Sample minibatch of transitions (S5;, A4;,C;,S;+1) from memory D
Gradient descent on 0% to minimize ||Q(S;, A, 09)—C;—~vQ'(S;11,7 (Sj11))]|
Policy update Vg J ~ % > VaQ(S, A, HQ)]S:S%A:W(S,&.)VQMT(S@ o)

A2 «— 709 + (1 — 1)69
0" «— 710" + (1 —71)0™

Smooth update of target networks

MEMMO: Memory of Motion — www.memo-project.eu

m (Deep Deterministic Policy Gradient)

[Lillicrap et al., ICML, 2016]

MEMMO: Memory of Motion — www.memo-project.eu

All the presented algorithms are all variations on the same theme:
Use Bellman Equations to find iterative algorithms

Severe limitations still exist:
- Algorithms difficult to tune to ensure convergence
- Need lots of samples (not practical on real robots)
- Not clear how to efficiently explore
- Robots can break during learning
- Does not generalize (fixed policy/Q-function)

MEMMO: Memory of Motion — www.memo-project.eu

Learn only the Q-function (Q-learning) => DQN (Atari games)

Learn Q-function + policy function (actor-critic) => DDPG
Very long history of actor-critic algorithms in robotics:
[Doya, Neural Computation 2000]
Natural Actor-Critic [Peters et al. 2008]

Learn directly policy (use policy gradient) => TRPO or PPO
Also long history of policy gradient methods:

REINFORCE [Williams, 1992]

[Doya, Neural Computation 2000]

PI2 [Theodorou et al., JMLR 2010]

MEMMO: Memory of Motion — www.memo-project.eu

Practical Example

Break
Let’s add a critic and test DDPG

MEMMO: Memory of Motion — www.memo-project.eu

