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ezier curves

Inventeur des courbes et surfaces
de Bézier, utilisées en informatique
productique, typographie ...
Il voulait un moyen simple pour
modéliser des formes et faciliter la
programmation des MOCN. Il créa Unisurf
(1966) qui est a la base de nombreux logiciels
de CAO/CFAO, dont CATIA. Un des chercheurs
du Xerox PARC, John Warnock, réutilise les travaux de

Pierre Bézier pour élaborer la partie description de courbes
et de polices de caractére PostScript.
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Bezier curves

* Mathematical basis for Bézier curves: Bernstein
polynomials, known since 1912 but applied to graphics
only 50 years later.

* Pierre Bézier patented and popularized, but did not invent
the Bézier curves and Bézier surfaces that are now used in
most computer-aided design and computer graphics
systems.

* The study of these curves was first developed in 1959 by
Paul de Casteljau at Citroén, where he was initially not
permitted to publish his work. Pierre Bézier used them to
design cars at Renault.

* Bézier curves are often used to define 3D paths as well as Paul de Casteljau
2D curves for keyframe interpolation.

e Bézier curves are now very frequently used to edit [ ——
movements and animations. A2

* TrueType fonts use quadratic Bézier curves, PostScript and
SVG use cubic Bézier curves.




Bezier curves

As the curve is completely contained
in the convex hull of its control
points, the points can be graphically
displayed and used to manipulate the

curve intuitively. %




Quadratic Bezier curves

For 0 <t < 1, a linear Bézier curve is the line traced by

For 0 <t <1, a quadratic Bézier curve is the path traced by

By pn(t) = (1—t) Bpp(t)+t Bp p(t)
—(1—1) ((1 )Py + tPl) + t((l P+ tp2)
< — (1 —t)’Py+2(1 —t)t P, + t* P, .
0
t=0 oP, a P, /

Linear Bézier curve

oF t=0 of,

Quadratic Bézier curve



Bezier curves

For 0 <t < 1, a cubic Bézier curve is the path traced by

BPO,P17P2,P3 <t) — (1 N t) BP07P1aP2 <t> +1 BP1aP27P3 (t)
= (1 —=t)°Py +3(1 —t)*tP, +3(1 — )’ Py + t° P

Cubic Bézier curve

oP,

0.2

0.2 0.4 0.6 0.8 1

Basis functions (Bernstein polynomials)
of cubic Bézier curves



Bezier curves of degree n K o
o= o sy,

k=1

For 0 < ¢t < 1, a recursive definition for the Bézier curve of
degree n can be expressed as a linear interpolation of a pair of
corresponding points in two Bézier curves of degree n — 1, namely

B(t) = b ()P,

bin(t) = (”) (1— ) ¢

[/

the Bernstein polynomials of degree n,

' [ ] [ ] [ ]
where (") = i,(g;i), are binomial coefficients.
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+ Superposition with basis functions No.
Bezier curves
Locally weighted regression (LWR)
Gaussian mixture regression (GMR)
Fourier series for periodic motion and

ergodic control



Superposition with basis functions
K
B=) wien
k=1

Locally weighted
regression (radial bases)

T

Wy, Qi Q \




r
|
=
—

Multivariate ord

inary least sguares

By describing the input data as X € RY D" and the output data
as YERNXDO, we want to find A € RP>P° such that Y = X A.

A solution can be found by minimizing the Frobenius norm
A = arg min [|Y" — XAl

= arg mfiln tr((Y - XA) (Y - XA))

= arg mfiln tr(Y'Y —2A'X'Y + AX' XA)

By differentiating with respect to A and equating to zero

XY 42X XA=0 — A=(X'X)'X'y

Moore-Penrose X‘i‘ j

pseudoinverse



X =1 X =|x, 1]

Degree 3 (€=8.25) Degree 4 (€=6.48)

guares A=XY

o

Degree 2 (e=8.53)

10

5

0
5 | |
0 10 20
X = [z% x, 1]

Degree 5 (e=6.47)




RN xDT

By describing the input data as X & and the output data

as Y e RVxP O, we want to minimize
A = arg min [[Y — XA|pw
= arg min tr((Y —~ XA)W(Y — XA))

A
= arg mfiln tr(Y WY —2A X' WY + A X WXA)

By differentiating with respect to A and equating to zero

X WY 12X WXA=0 «— A=[(XWX) 'X W]y

\XLV
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(X WX) ' X WY

Ordinary least squares
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Weighted least squares

Color intensity
proportional
to weight
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LWR computes K estimates Ak, each with a different weighting function
¢r(xh), often defined as the radial basis functions (RBF)

. 1 -
On(@h) = exp (= 5 (@) — p) B (@ — uh)),
or in its rescaled form as Qi
q5k(2131) . ¢k($£)
n, K = y
Zi:l ¢i(x?)

where p; and 37 are the parameters of the k-th RBE.

4 )
— K weighted regressions on the same dataset { X*, X°}

— Nonlinear problem solved locally by linear regression

g J




7

d regression (LWR

Often, the centroids p are set to uniformly cover the input space, and
37 =1I0c"is used as a common bandwidth shared by all basis functions.

X' =lty,tg, ..., tn]

A T Ny 7T o
An associated diagonal matrix A= (X" W, X") " X* W, X

Wi = diag (6x(@)), 01(a3). ... du(ah)

can be used to evaluate Ag. The result can then be used to compute

K
X°© :Z W.X*A,
k=1

- 04}
021




regression

Locally weighte







Locally weighted Resources

Softwares

http://www.idiap.ch/software/pbdlib/
Matlab codes: demo LWRO01.m
C++ codes: demo_LWR_batchO1l.cpp

References

[Atkeson, Moore and Schaal, “Locally weighted learning for control”,
Artificial Intelligence Review, 11(1-5), 1997]

[Cleveland, “Robust locally weighted regression and smoothing
scatterplots”, American Statistical Association 74(368), 1979]

[Calinon and Lee, “Learning Control”, Humanoid Robotics: a Reference
(Springer), 2019]
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K Gaussians
N datapoints of
dimension D

1 1 _
N (@i, ) = —5—— exp (= 5 (@ — ) 5 (@ — )
emPimE TP\
M
x € RPN Observations (N = ZT m, the m-th trajectory has T, datapoints)

m=1

- — _
T € RD Mixing coefficient Parameters Q™ — {7'('7;, L;, 2@}@[21
p, € R Center (or mean) e

= RDXD C : - - =
(> ovariance ma HX)[ |

P(w)ll

R

Equidensity contour of
one standard deviation



Covariance structures in CMM

Isotropic Diagonal

Full Tied




54 pages!
Proposed solution:
Moment-based approach
requiring to solve a
polynomial of degree 9...

... which does not mean that moment-
based approaches are old-fashioned!

They are actually today popular again
with new developments related to
| spectral decomposition.
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- = Single normal /
— Pearson estimates /
-=—+ Individual components

1 1 1 1 1
0.58 0.60 0.62 0.64 0.66 0.68 0.70
Ratio of forehead to body length



cgure K Gaussians

N datapoints
M—step: These results can be intuitively
N - interpreted in terms of normalized
o t=1 " counts.
! N ’ EM provides a systematic approach
to derive such procedure.
ZN h, — Weighted averages taking into
;< t:]%[ te =7t : account the responsibility of each
> iy e datapoint in each cluster.
N T
s 2=t e (@ — ) (@ — )
2 A\

szt\il ht,i






Gaussian conditioning
(zregression from joint distribution)

A = arg min (Y — X A) (Y - X A)
- (XX)'XYy=Xx'Y

N (z°, 20) ........................................................................................................................................................................ —

xl’

- Linear regression from joint distribution



Caussian conditioning

We consider multivariate datapoints & and multivariate Gaussian

distributions characterized by centers p and covariances 3J, that
can be partitioned as

wI T EI EIO
€L = [IBO] o M= [ZO] , 2= lzoz EO] :
If x ~ N(u,X), we have that °|x? ~ N (&°, 20);
with parameters
30 — M(’) 4+ EOIEI—1<wI . MI))
20 — EO L 20121—1210.

We can see that ¢ is linearly dependent on a*, and that 310 is
independent of x*.

We can also notice that for full joint covariance, the conditional
covariance X° will typically be smaller than the marginal 33°.



Caussian m

P(x°|x”) can be computed as the multimodal conditional distribution

P(af|x?) = Zh N( )

with A9 = pf + IS8T (2" — pl)
I Y D O I ik
S N (2| pf, 27)

and hz =

computed with the marginal

1

(@] puf, 35) = (2m) 57 2 exp (= 5 (@7 — ) =@ - ).



Caussian estim mixture of Caussians

We can approximate a mixture of Gaussians Zfil hi N (i, ;) with
a single Gaussian N (u, ), by moment matching of the means
(first moments) and covariances (second moments) with

K
H = th‘ i
i—1

K
=) h (EZ- - MM) — pp,
1=1

also referred to as the law of total mean and (co)variance.
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Caussian m

In GMR, an output distribution as a single multivariate Gaus-
sian can be evaluated by moment matching of the means and
covariances. The resulting Gaussian distribution N (f°, XA]O) has
parameters



Gaussian mixture regression (GMR)

& P(€°]€7)
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mixture regression - E

R <= =

P(E°IE7)

[Calinon, Guenter and Billard,
IEEE Trans. on SMC-B 37(2), 2007]
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With expectation-maximization (EM):
(maximizing log-likelihood)

[Hersch, Guenter, Calinon and Billard,
IEEE Trans. on Robotics 24(6), 2008]

With quadratic programming solver:
(maximizing log-likelihood s.t. stability constraints)

[Khansari-Zadeh and Billard,
IEEE Trans. on Robotics 27(5), 2011]



ixture regression (GMR) - Resources

Softwares

http://www.idiap.ch/software/pbdlib/
Matlab codes: demo_GMRO01.m
C++ codes: demo_GMRO1.cpp

References

[Ghahramani and Jordan, “Supervised learning from incomplete data via
an EM approach”, NIPS’1994]

[Calinon, “A tutorial on task-parameterized movement learning and
retrieval”, Intelligent Service Robotics 9(1), 2016]

[Calinon and Lee, “Learning Control”, Humanoid Robotics: a Reference
(Springer), 2019]
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Superpeosition with basis functions

K
- Ywo sl
k=1

Fourier series
(cosine bases)




Fourier series

, . FT .
Time Domain i Frequency Domain
s(t) S(w)
Signal s(7) Fourier Transform S{(w)

cosine wave single frequency
sine A uniform Wd
Ferussian Gaussian

4sin@

4sin36
3n

4sin56
5n

4dsin7@
I




0.3

0.2
0.1 ‘
- el e — e e - - — J
0 5 10 15 20
frequency /Hz
| eft right
hand hagnd
> 4




?E@







&=k (ur—x)— k' + f(s)

I .’:151 — ]{POI,T — $1> + kvitl
2.1.32 — ]{/’PO,LT — $2> + ]{iviiIQ

E7 — k" (pr — ®7) + K@

X =

o~

W, = diag (qbk(Sl), Dr(52), - - - a@bk(ST))

F, = (X" W, X") ' X"W, X°






DMIP) - Resources

Softwares

http://www.idiap.ch/software/pbdlib/
Matlab codes: demo _DMPO1.m

References

[ljspeert, Nakanishi and Schaal, “Learning Control Policies For Movement
Imitation and Movement recognition”, NIPS’2003]

[ljspeert, Nakanishi, Pastor, Hoffmann and Schaal, “Dynamical movement
primitives: Learning attractor models for motor behaviors”, Neural
Computation 25(2), 2013]

[Calinon and Lee, “Learning Control”, Humanoid Robotics: a Reference
(Springer), 2019]



?mmmmm movement primitives (?r@ 1P)



Trajectory distribution
o

L2
T, = , cRPT

M samples




Probabilistic movement primitives (ProMP)

uni-dimensional trajectory:

d-dimensional trajectory:
r =W w

[\If ERDTXDK] [w c RDK]

Ioi(tr) Ioaltr) - I

(Ii(t) Igo(t) --- Ipx(t)
Ioi(ta) Iga(ta) -+ Igk(ta)

K(tr)

tzl/

QK






Probabilistic m

z ~ N (‘I’u"", ‘I’Ew\I!TJr)\I)

Bézier curves Locally weighted Fourier series
(Bernstein bases) regression (radial bases) (cosine bases)
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Probabilistic m Resources

Softwares

http://www.idiap.ch/software/pbdlib/
C++ codes: demo_proMPO1.cpp

References

[Paraschos, Daniel, Peters and Neumann, “Probabilistic Movement
Primitives”, NIPS'2013]

[Calinon and Lee, “Learning Control”, Humanoid Robotics: a Reference
(Springer), 2019]



Superposition V
Product of Gaussians




Choosing between using scalar
weights or full weight matrices
does not look like a detail!

=

mitives as a fusion problem

¢

b




Motivating example:
A probabilistic view on segment crossing!

& = argmin |-y, + |-z, Product of

— (Wi + Wo) ™ (Wi + W) Gaussians
= (3R (B 3 )

(fusion)
N (g1, %) N (12, %)
JL; center of the Gaussian 1 1
T =51+ M2
}>; covariance matrix 2 2
(superposition)

W, precision matrix

(Wi=%7)



Kalman filter with feedback gains

>, = (I - K,C)x
pe =y + Ki(y, — Cy”)
K, =3%/C" (3, +Cx"C")

an filter

Kalman filter as product of Gaussians

—1

yr = Cx; + ey
ey ~ N (0,%,)

1
== (B ez

1
pr = (Eg” py + 30 u?) » A

Nt — CTyt
: »? 2 cts, ct'

() ‘.)

e & &
t=0 t=1 t=2

Ly = A.’L't_l + B’U;t + €y
ex ~N(0,X;)

! = Az, + Bu,
>V EAY, AT+ X,



Miotivating example:
Fasion of IXK and joint angle controllers

Tracking —

=
/l

this point

t=0

Goal 2:
V777 Keeping
first joint

Superpeosition  upright

w7 []
» O
fusion

t=0



mbination of prim

itives as a fusion problem

N(H’E) ~ N(H(l)jz(l)) _/\/‘(M@)’E(?))

Null space projection

/ (hierarchy constraints)
. Scalar superposition

The full weight matrices approach
covers both scalar weights
(with isotropic diagonal matrix)
and null space projection
operations!




del pred
Linear quadratic tracking (LOT)
Task-parameterized movement mod

ictive contrel (M




Linear guadratic tracking (LOT)

T Track path!  Use low control commands!

. 2 2 —

win: > e[l + el
t=1 B

st Xy = Awt + Buy System dynamics
Model predictive control (MPC): 0
&, state variable (position+velocity) 5 "
M+ desired state =
U; control command (acceleration) & ——
Qt precision matrix )
Rt control weight matrix &?. —




T Track path!

How to solve this objective function?

Use low control commands!

min > {le=ilg, + el
u Q, R,

t=1

S.1. L1 — Awt T But System dynamics

Pontryagin’s max. principle,
Riccati equation,
Hamilton-Jacobi-Bellman

(the Physicist perspective)

Differential dynamic
programming

(the Computer Scientist
perspective)

/

Linear algebra

(the Algebraist
perspective)




Let's first re-organize the objective function..

C = ZT: ((Ht—wt)TQt (Nt_mt) + u, Ry ut)

=1
=(p—z)Q(p—=x) + uRu

Q:
_Nl_ _5171_
L2 4 )

KT LT ur




Let's then re-organize the constraint..

[.’L‘t_|_1:AiUt‘|‘But ]

Iro = AiBl + B’U,l
x3 = Axs + Bus = A(Ax| + Bu,) + Buy

T = AT_lwl + AT_QB’U,l + AT_3B’U,2 + -+ Br_qupr_4

T I 0 0 0 0]
s A B 0 0 0 ul
x3| - | A | 4, 4+ | AB B 00| "
xr|  [AT A"?B AT3B ... B o| L'
%(_J N\ v J
S® S




Linear guad Enalytic selution

The constraint can then be put into the objective function:

Wﬂ: = S%x; + S%u

c=(p— w)TQ(u —z) + w'Ru
= (p —S%x —S“u)TQ (e —S%x1 —S"u) + u'Ru
Solving for u results in the analytic solution: N OCNN?
L

a=(5""QS"+R) 'S"'Q (1 — S%x,)



C/LQT as a product of Gaussians

T Track path!  Use low control commands!

. 2 2
min > |||y, + ||
1 Hi =Tt q, tllR,
t=1

o 2 8" (p — S%x))
N (u 2“) x N (uu, Q;l) N (0, R‘l) Q. 2 5 Q8"

N(Nm Q;l)

‘e Q y -> Bayesian view on MPC with variables
— spanning a given time horizon



Probabilistic representation of MP

4= (S*"QS"+R) '8V'Q (n — S%x) » % = 8%z + S"@
St = (S*'QS"+ R) 5% — §%(S*TQS" + R) 'S

The distribution in control space can
be projected back to the state space

t=0.3

"""""
°°°°°°
TN

N t=0.6
,.,.,M»\ » t=0_3 T t=1

P
»»»

(

Passing through
3 keypoints with
varying precision

T2







© O HSMM

HSMM provides a model of the LL
state duration instead of relying
on self-transition probabilities
as in standard HMM

N —




Ea G s Ea T e

Miarkov mod

@GMM — {7Ti7 L, Ez}£1
@HMM {{CLZJ }] 15 Hi7 L, Zz}fil
@HSMM {{CL@ j}] . ]7&27

Parametric duration
distribution

HMM




Learning minimal intervention controllers

T LA

. ~ 2 2 Transition and
Imnin E H"Bt_wt”Q =+ HutHRt state duration
U 1 t (HSMM)
st. ;= Ax; + Buy ¥ |
Stepwise reference path given by: ~. N

A _1

mt — l’l'St Qt — ESt \LMS’E?))

St 111111111222222222222333333333

; center of the Gaussian
E@- covariance matrix




Learning minimal intervention controllers

s={1,1,1,2,...,4} [¥" 0o o 0 -~ O] [m
o ' o 0 --- 0 [
o o0 %' o0 --- 0 [
o 0 o0 >'.-.. 0 1o




Learning controllers instead of trajectories

A
L3




lodel pred
Linear guadratic tracking (LOT
Task-parameterized movement models

ictive contrel (M







Ceonditioning-based approach REgiessionwiting
context variable c:

- Learning of P(x|c)

Demonstrations Reproduction attempts

o €
m//ﬂ"fff

— Generic approach, but
limited generalization capability



Track path in coordlnate system |

- 2
mm > > Hﬂt thQ?) ™ Hut”Rt

t=1 j=1 Use low control commands

st. 1 = Axy + Bu,

System dynamics

2 New position and
. . . 2
orientation of coordinate
;, 2 systems 1 and 2

2 =

Two candidate 1
coordinate systems (P=2) I
-y
Set of demonstrations Reproduction in new situation

|




multiple coordinate system

Track path in coordlnate system j

- 2
min 33 [l + el

t=1 j=1 Use low control commands

st. 1 = Axy + Bu,

System dynamics




multiple coordinate system

Track path in coordlnate system j

- 2
m11’1 > > HPJt thng) ™ 'Iut”Rt

t=1 j=1 Use low control commands

—1
plV QY )



S

multiple coordinate system

T P

mn 323 el g + el
t=1 j=1

In many robotics problemes,
the parameters describing
?i'f """"""""""""" g the task or situation can be
interpreted as coordinate
systems




multiple coordinate system

r.r . 5 )
min > 2 ~@t||gu + [|uel|,
t=1 j=1

» Learning of a controller
(instead of learning a trajectory)
that adapts to new situations
while regulating the gains
according to the precision and
coordination required by the task

~_P
3 K
p— @AV ':1:



multiple coordinate system

r.r . 5 )
min > 2 ~@t||gu + [|uel|,
t=1 j=1

» Retrieval of control commands
in the form of trajectory distributions,
facilitating exploration and adaptation
(in either control or state space)




Exploitation in other probabilist

Demonstrations

TP model with

raw traiector TP model TP model TP model with TP model
: .J : Y with MPC with GMR Trajectory-HMM  with ProMP
C distribution
S 32
5 =
he) (V)]
o o
o ©
o (V5]
[
-
c O
t & %/ é /% % %
S 2
T wn
S 3
Q o
g c

http://www.idiap.ch/software/pbdlib/






Interactive editing of stochastic targets

R o User interface to edit and

) / generate natural and dynamic
motions by considering

. b : variation and coordination

Compliant controller to retrieve
safe and human-like motions

"BAXTER"

[Berio, Calinon and Leymarie, IROS’2016] [Berio, Calinon and Leymarie , MOCO’2017]



ISTITUTO
ITALIANC DI
TECNOLOGIA

[Rozo et al., IEEE T-RO 32(3), 2016]
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Rssistive d

-DRESS

Assistive interactive robotic
system for support in dressing

— SNSF, CHIST-ERA (2015-2018)
I&I | https://i-dress-project.eu

UWE o

: West of
Bristol | &xin
LINUOUS
onliE/adaptauon

X

- = P (w[F=]

RESEARCH IMSTITUTE I

[Pignat and Calinon, RAS 93, 2017] [Canal, Pignat, Alenya, Calinon and Torras, ICRA’2018]



2 DexROV

. 04 s
spaceapp\!ﬁzztlons PCRATA LR

- 2 N JACOBS c_,x

UNIVERSITY
comex

FR-QUARTZ e lCIIS0

afsty, effectiveness, re
¥ operationss
il 14

[ Cognitive
L] .
'l Engine

http://dexrov.eu
EC, H2020 (2015-2018)



2';@ DGXRU\’ http://dexrov.eu

EC, H2020 (2015-2018)

control

Robot side

Teleoperator side

ﬁ

only Gaussian ID
is transmitted

DexROV-exoskeletonsis ready for lvsli"'ng
-

[Birk et al., IEEE Robotics and Autom. Magazine, 2018 (in press)] [Havoutis & Calinon, Autonomous Robots, 2018]



different object shapes

‘ Coordinate

system
| as task
W7~ parameter

[Calinon, Alizadeh and Caldwell, IROS’2013]



Learning tasks prioritization

=J'&+ (I - JJ)g

@ = arg min ||u — T, + w—dl; 5,

q2

Principal task:
track horizontal reference

Secondary task:
track desired posture

q1



Learning tasks prioritization

—

Demonstration

Priority on left hand

‘?m\

Demonstratlon

- - ~
‘\ |
i a3 ,

q=|J] NJTH

\ J

T2

Candidate hierarchy A1

o= (s 2

Candidate hierarchy A2

[Silvério, Calinon, Rozo and Caldwell, IEEE T-RO 2019] [Calinon, ISRR’15]



Learning tasks prioritization

Priority on right hand

. %%///

Demonstration

Demonstration ‘

Reproduction

4

—— i . - F

Reproductlon
i= gl N frH ] Y
.’L‘Q o N

\ J

Candidate hierarchy A1

o= (s 2

Candidate hierarchy A2

[Silvério, Calinon, Rozo and Caldwell, IEEE T-RO 2019] [Calinon, ISRR’15]



Learning tasks prioritization

Equal priority

S

|

Demonstration

b= [J{ Nljg} ["’?1
L2

\ J

Candidate hierarchy A1

b= [N2J§ J;} [21]
2

Candidate hierarchy A2

[Silvério, Calinon, Rozo and Caldwell, IEEE T-RO 2019] [Calinon, ISRR’15]






Sphere and orientation (unit quaternion) manifolds



Interpolation and extrapolation Clustering and distribution

Fusion of sensing/control information Linear quadratic tracking



Interpolation on Riem
Orientati
rientation ) Sd

(unit quaternions

T
SE(d)
Rigid body motions
(position+orientation)

Sd Covariance features, inertia and gain matrices,
+-+  manipulability ellipsoids, trajectory distributions
(symmetric positive definite matrices)




Statistics on Riem manifolds

N datapoints



V ——

TR S v . 7z LV

Ri i metry: Gau
Riem an
Riemanni

: ! 'Y Log,(x)
N, B) =~ 030 (= 5lo5, (@) u(@)

\V/ (2m

neM

’ > e T, M



Clustering on Riem manifolds

Px,) = Zﬁk N (x|, i) K Gaussians
L—1 N datapoints



Clustering on Riem

d Covariance features, inertia and
8 gain matrices, manipulability
T ellipsoids, trajectory distributions
(symmetric positive definite matrices)

Orientation Sd : ' '
(unit quaternions) ~/ \/

ot

. -
- A SE(d)
Rigid body motions

(position+orientation)




Gaussian mixture regression (GMR) to compute P (x°|x”)

from the joint distribution P(x”. £°) encoded as a GMM
Y]

xr? ZL‘I & 82 x°
x° ¢ S?

-> Regression for orientation data (unit quaternions on S? )



[Zeestraten, Havoutis, Silverio, Calinon and Caldwell, IEEE RA-L 2(3), 2017]
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[Zeestraten, Havoutis, Silverio, Calinon and Caldwell, IEEE RA-L 2(3), 2017]



gression with covariance features

Gaussian mixture regression (GMR) with SPD datapoints

@® centers

A
@® covariances r R
x° € R

Position

xR
r° e ST,

Time

DO SN AARRN]

Covariances of SPD datapoints not depicted here (4th order tensors)

Covariance

Time

- Predicting the temporal change of covariance features



Symmetric positive definite (SPD) matrix manifold



vegraphy data
F=ICiI30
‘#’ e e TACT-HAND

German Aerospace Center

SNSF, D-A-CH (2016-2019)

< —
E CIT=C
~ —
Cognitive Interaction Technology
Center of Excellence
Bielefeld L versizy

onraes BN\

LT

Surface electromyography Transformation in spatial Control of the
(SEMG) measurements covariances (SPD matrices) corresponding hand pose

[Jaquier and Calinon, IROS 2017]
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g 0.5
o
0
wrist
supination wrist g
\) flexion/extension '5
= 0.5
2 0
== Reference
== Standard regression

== Regression on SPD manifold

=

SEMG data from Ninapro
database processed as
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Time (s) Time (s)

[Jaquier and Calinon, IROS 2017]



K Gaussians
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- Control the orientation of the robot hand in accordance
to the orientation of objects, tools or virtual landmarks



Al

Example: Model predictive control of orientation
with unit quaternions by using Riemannian geometry



We demonstrate three different
tasks, each requiring a different
synergy between the end-effectors.

Coupled Translation and Rotation

L«r—u

[Zeestraten, Havoutis, Calinon and Caldwell, IROS’17]




We demonstrate three different
tasks, each requiring a different
synergy between the end-effectors.

Coupled Translation and Rotation

L«r—u

[Zeestraten, Havoutis, Calinon and Caldwell, IROS’17]







Resources

Softwares

http://www.idiap.ch/software/pbdlib/
Matlab codes: demo_Riemannian_sphere GMMO01.m

C++ codes: demo_Riemannian_sphere_ GMMO1.cpp
References

[Zeestraten, Havoutis, Silvério, Calinon and Caldwell, “An Approach for
Imitation Learning on Riemannian Manifolds”, IEEE Robotics and
Automation Letters 2(3), 2017]

[Jaguier and Calinon, “Gaussian Mixture Regression on Symmetric
Positive Definite Matrices Manifolds: Application to Wrist Motion
Estimation with sSEMG”, IROS’2017]
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Reproductions with GMR

http://www.idiap.ch/software/pbdlib/




PbDIlib - Mozilla Firefox
B, PbDlib

A

DD D

B

') @ idiap.ch/software/pbdlib/ G e @ W

PoDLib

PbDlib is a collection of source codes for robot programming by
demonstration (learning from demonstration). It includes a varied
set of functionalities at the crossroad of statistical learning,
dynamical systems, optimal control and differential geometry. It
is available in the following languages: N

e Matlab / GNU Octave
o C++
e Python

PbDlib can be used in applications requiring task adaptation,
human-robot skill transfer, safe controllers based on minimal
intervention principle, as well as for probabilistic motion analysis
and synthesis in multiple coordinate systems.
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Terminal = ® ) 1410 %
5 & rli@pavilion01: ~/Documents/pbdlib-cpp/build

rli@pavilion®1:~/Documents/pbdlib-cpp/build$ ./demo HSMM_batchLQRro1l]
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Terminal = bd ) 1413 &
@S5 rli@paviliono1: ~/Documents/pbdlib-cpp/build

rli@pavilion@1i:~/Documents/pbdlib-cpp/build$ ./demo TPGMMProducte1i ||
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@S5 rli@paviliono1: ~/Documents/pbdlib-cpp/build

rli@pavilion@1i:~/Documents/pbdlib-cpp/build$ ./demo TPGMRE1 |
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Terminal = ' ) 1416 %
@S5 rli@paviliono1: ~/Documents/pbdlib-cpp/build

rli@pavilion@l:~/Documents/pbdlib-cpp/build$ ./demo TPbatchLQre1l]
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Source codes (Matlab/Octave, C++ and Python):
http://lwww.idiap.ch/software/pbdlib/

Contact:

sylvain.calinon@idiap.ch
http://calinon.ch
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